本文介绍了密码学中的基本数学概念,特别是模运算和数学群的概念,为理解加密技术和数字签名等密码学技术奠定了基础。作者通过简单的例子解释了模运算和群生成器的概念,并提到这些数学概念在密码学中的重要性。
文章探讨了在素数域 $ ext{F}_p$ 中整数除法的挑战,特别是在零知识证明(ZKP)中的应用。强调了传统除法符号可能导致多个有效解的问题,并提供了两种解决方案:比特位除法算法和约束商的其他方法,以确保唯一性和安全性。讨论了使用 Circom 实现的具体代码示例及其优缺点。
本文深入探讨了密码学中的环(ring)这一抽象代数结构,介绍了环的定义、基本性质及其在密码学中的应用,特别是后量子密码学(PQC)中的重要性。文章还详细讲解了理想(ideal)和商环(quotient ring)的概念,并通过多项式环的示例展示了如何将多项式映射到有限的环中。
Tornado Cash:开发者参考手册
zkTLS 简介
探索 ZK 框架:用 5 种不同的 ZK 语言实现的 Mastermind 游戏
10 篇塑造现代零知识证明的必读论文
zkVM 测试报告
本文详细介绍了Bulletproofs在范围证明中的构建方法,通过验证向量aL的二值性和其与向量2n的内积来证明标量v的范围在2^n内。文章还展示了几种代数技巧,并通过Monero的使用实例说明了该技术的应用。
本文深入探讨了如何在零知识证明算法中利用随机线性组合来有效地检查多个等式的相等性。通过实例展示了Pedersen承诺的等式验证过程,并提出了一种减少通信开销的方法。这种技术能够实现对多个内积同时进行验证,从而提高效率。
文章介绍了在推导范围证明和编码电路时,内积运算的一些有用代数技巧,并提供了每个规则的简单证明。
本文详细阐述了如何在零知识证明(ZKP)中通过递归折叠的方法,减少向验证者传输的数据量,从而高效地证明内积和向量的承诺。文章包括算法的详细描述、数学推导和代码实现。
文章介绍了如何在不发送整个向量的情况下,证明已知 Pedersen 向量承诺的开启,并详细描述了算法的实现和安全问题。
本文详细介绍了如何在零知识证明中构造内积证明,通过向量多项式和内积计算,展示了如何在不泄露原始数据的情况下证明内积计算的正确性。文章还提供了相关算法的具体实现步骤,并指出如何进一步优化证明大小。
本文是密码学系列文章的一部分,重点介绍了基于椭圆曲线的加密协议,包括密钥交换、承诺方案、签名、零知识证明和可验证随机函数等。文章通过清晰的示例和图示,详细解释了这些协议的原理和实现方法。
本文介绍了算术电路的概念及其作为通用计算模型的作用,探讨了如何利用算术电路验证问题的解决方案,并提到其在零知识证明中的应用。文章还提到算术电路可以分解为其构建模块(门),便于验证计算过程。
文章详细介绍了如何使用多项式承诺方案在零知识证明中验证多项式乘法的正确性,包括算法步骤和优化方法,并附有代码实现。
本文介绍了椭圆曲线在加密和数字签名中的应用,详细阐述了公钥和私钥基于离散对数问题的生成原理,以及椭圆曲线集成加密方案(ECIES)和椭圆曲线数字签名算法(ECDSA)的工作机制。文章强调椭圆曲线群运算在保障加密和签名安全性中的核心作用,并指出哈希函数等进阶主题将在后续讨论。
探索市面上的 zkVMs:哪些项目真正符合零知识虚拟机的标准?
本文深入分析了完全同态加密(Fully Homomorphic Encryption, FHE),强调了它在允许对加密数据进行计算而不进行解密方面的重要性。
扫一扫 - 使用登链小程序
114 篇文章,705 学分
388 篇文章,475 学分
67 篇文章,425 学分
118 篇文章,352 学分
163 篇文章,339 学分