逆向 EVM - 解析原始Calldata数据
深入了解Solidity数据位置 - Calldata
如何解码原始 EVM Calldata 数据
Lotus Router是一个专门针对MEV交易的交易路由合约,支持多种DeFi协议,如Uniswap V2/V3等。文章详细介绍了合约的核心逻辑、数据结构及压缩编码方法,展示了如何在处理复杂回调及数据解码时,使用内联汇编来优化执行效率和减少calldata体积,并指出代码中存在重入攻击的风险。
通过本次闯关,让我们深入理解 calldata 数据编码。
本文深入探讨了以太坊的EIP-7623提案,旨在通过调整交易的calldata费用,限制最大区块大小,从而提高资源利用效率。文章详细分析了EIP-7623的动机、影响、受影响的交易类型以及潜在的担忧,特别是关于数据可用性(DA)目的的交易如何被额外收费。作者希望通过这篇文章帮助读者更好地理解这一提案及其内容。
本文档详细介绍了Solidity智能合约开发中的各种Gas优化技巧,涵盖存储、错误处理、数学运算和函数调用等多个方面,包括避免初始化默认变量、存储打包、常量与不可变状态变量、缓存存储变量、使用unchecked{}、calldata代替memory等关键优化策略,旨在帮助开发者编写更高效、更节省Gas的Solidity合约。
本文深入探讨了以太坊虚拟机(EVM)的数据存取机制,阐明了不同数据位置(如stack、memory、storage、calldata和transient storage)的性质与用途,及其与Solidity编程的相关性。文章不仅解释了Solidity中常见错误的原因,还提供了丰富的代码示例和图示,帮助开发者理解EVM内部工作原理。
这篇文章深入探讨了以太坊层2(L2)中calldata优化的重要性及其实现方法。文章解释了与calldata相关的gas成本,并在不同L2架构间的差异,提供了代码示例和具体技术细节,涵盖了如何通过技术手段减少calldata的尺寸,进而优化交易成本。
EVM—calldata存储空间详解文章旨在记录过去所学知识,若文章内容存在不当,欢迎指出。若对文章内容感兴趣,也欢迎评论区留言讨论!文章部分图片取自本人其他博客。一、Calldata的结构EVM中的主要数据存储结构包括Storage、Memeory、Stack、Calldata。本章主要介绍
在上两篇文章中,我们分析了SolidityEVM中的存储结构,在本篇文章中,我们将详细分析EVM的calldata是如何进行编码的。
本文详细介绍了Solidity中的数组和字符串数据结构,包括它们的声明、使用方式以及一些重要的概念如calldata和memory。还提供了多个代码示例来帮助理解这些概念。
calldata
memory
本文详细介绍了如何理解以太坊交易中的 calldata,包括编码和解码的原理和具体实现。通过使用 Web3.py 和 Python,读者可以掌握如何解码和编码以太坊交易的 calldata,从而更深入地了解智能合约的交互机制。文章结构清晰,涵盖了相关概念的解释及实际代码示例,适合有一定以太坊基础的开发者学习。
本文总结了Solidity智能合约开发中常见的五个陷阱,包括存储、内存和calldata的区别,重入攻击,默认public的可见性,使用tx.origin进行授权的风险,以及无限循环/高Gas成本问题。针对每个问题,文章都给出了具体的代码示例和修复方案,旨在帮助开发者构建更安全、更智能的智能合约。
本文介绍了Solidity中的两种复杂数据类型:结构体(Struct)和映射(Mapping)。结构体用于创建自定义数据类型,类似于面向对象编程中的类,而映射则类似于字典,用于存储键值对。文章通过代码示例详细解释了它们的用法,并结合一个账户管理的智能合约,展示了如何在实际应用中同时使用结构体和映射,最后还简单介绍了storage, memory, calldata。