Zama宣布与摩根大通的Kinexys合作,成功完成了基于全同态加密(FHE)技术的概念验证项目,该项目专注于金融领域的隐私保护。通过fhEVM,实现了在以太坊智能合约上的加密交易,确保投资者在基金认购、二级市场交易、原子结算和KYC/AML合规等场景中的数据隐私和安全。
本文介绍了Suffragium,一个利用零知识证明(ZKP)和全同态加密(FHE)构建的链上加密投票系统,该系统利用Zama的fhEVM来保护投票的隐私性、完整性和可验证性。Suffragium旨在通过加密技术,实现安全、私密且防篡改的投票过程,同时确保投票结果的透明和可信。
新加坡国立大学(NUS)的一组计算机科学学生在 TikTok TechJam 2024 上使用 Zama 的 Concrete ML 和全同态加密 (FHE) 技术,开发了一个广告服务系统,展示了 FHE 如何为在线广告开创一个尊重隐私的新时代。该项目名为 AnonymousAds,旨在保护用户隐私的前提下,实现个性化广告投放。
Concrete ML v1.7 版本发布,引入了多项新功能,包括在加密数据上微调 LLM 模型和神经网络,利用 GPU 加速提升加密推理的性能(最高可达 1-2 倍),以及展示了一个通过加密 DNA 预测祖源的 Hugging Face space 示例。此外,该版本还支持 Python 3.11 和 PyTorch 2。
Concrete v2.8版本发布,主要更新包括: Concrete与TFHE-rs的互操作性,允许开发者在两者之间转换整数,利用各自的优势;自动模块追踪功能,简化了模块编译的流程;以及新增了多个教程,展示了FHE和Concrete在实际应用中的用例。此外,新版本还包括各种优化和错误修复,尤其是在Concrete GPU运行时,提高了FHE评估的速度。
Zama 发布了 TFHE-rs (v0.8)、Concrete (v2.8) 和 Concrete ML (v1.7) 的新版本。
TFHE-rs v0.8版本发布,引入了加密数组类型,并增强了多GPU计算能力,开发者可以更轻松地处理向量和张量,同时大幅缩短GPU上算术运算的计算时间,此外,新版本还引入了诸多新特性,包括后同态计算密文压缩、更多基于GPU的同态运算、以及CPU运算的改进等。
Zama团队使用Concrete ML加速了同态加密(FHE)在机器学习中的应用,并成功超越了之前论文中的基准测试结果。他们通过改进编译器,分离了机器学习和密码学任务,并采用了MLIR框架,支持多种硬件加速器。实验结果表明,新的Concrete ML在执行速度上有了显著提升,例如NN-20模型比2021年的结果快21倍。
本文介绍了如何使用 Concrete ML 构建一个端到端加密的类似于 23andMe 的基因测试应用程序。文章重点介绍了 Zama Bounty Program Season 5 中两个获胜的解决方案,它们都使用了全同态加密(FHE)来保护敏感的 DNA 数据,并对这两种方案的实现原理、精度和性能进行了分析,展示了 FHE 在保护个人身份信息(PII)方面的价值。
Zama 团队发布了 TFHE-rs (v0.7)、Concrete (v2.7)、Concrete ML (v1.6) 和 fhEVM (v0.5) 的新版本。