“时间锁” 就是在某一个时间事件发生后才能打开的锁,即,为了通过这样的操作码的检查,由某种方式取得的当前时间已经越过了脚本预先指定的时间。
本章,我们正式进入最常被使用的比特币复杂脚本模块:多签名。
理解基于比特币脚本的合约式协议,如何嵌入具体的应用场景中并为相关参与者服务。
本文深入探讨了闪电支付通道和闪电网络的工作原理,详细解释了如何利用比特币脚本实现双向支付通道,并通过哈希时间锁合约(HTLC)实现支付路由。此外,还介绍了闪电网络在可扩展性方面的优势,以及Lightning Pool和Swap-in-Potentiam等周边应用,展示了比特币脚本的灵活性和强大功能。
本文介绍了比特币脚本中的哈希锁功能,也称哈希原像检查,并通过示例展示了如何使用 Policy 函数实现哈希锁脚本。哈希锁可用于资助哈希碰撞的发现、实现免信任的原子化互换,也被闪电网络用于支付路由,和潜水艇互换等重要功能。
本文介绍了比特币脚本中的时间锁概念,包括绝对时间锁和相对时间锁,以及如何在交易和脚本层面设置时间锁。文章还通过示例展示了如何使用 Policy 语言和 Miniscript 编译器来创建包含时间锁的复杂脚本,并探讨了时间锁在个人强制储蓄、灾备措施、资金社交恢复、免信任仲裁、资金托管者灾备以及免信任服务商等多种场景下的应用,最后提到了Taproot升级引入的MAST技术对脚本隐私性和经济性的提升。
本文介绍了比特币多签名脚本的概念、示例和用途。多签名脚本允许多个签名来解锁比特币,可以用于个人保险柜、企业财务、联盟侧链、电子商务和免信任的托管等场景,以提高安全性和灵活性。文章还提到了Policy语言、Miniscript代码和Script代码,以及多签名的其他用途。
本文是“有趣的比特币脚本”系列的第一篇文章,介绍了比特币交易、输出和脚本等基本概念,以及Miniscript和Policy语言。比特币脚本通过脚本规定UTXO的锁定条件,并通过提供特定的数据来解锁,从而实现经济合约,并为合约的关键状态转换提供密码学保证。
本文提出了分层闪电网络通道的概念,旨在解决闪电网络中通道容量动态管理的问题。分层通道允许链下灵活调整通道容量,类似于闪电网络之于比特币,解决了传统链上调整容量的延迟和成本问题。此外,分层通道还能帮助临时用户在无需瞭望塔的情况下避免资金滞留的问题,提升闪电网络的可扩展性、效率和易用性。
本文介绍了10101项目,该项目旨在将非托管交易功能引入闪电网络,允许用户在不放弃资金控制权的前提下进行比特币交易。文章详细解释了非托管交易的原理、谨慎日志合约(DLC)的概念,以及如何在闪电网络中实现DLC,从而实现无对手方风险的交易。