
HAL Id: hal-03518757
https://hal.archives-ouvertes.fr/hal-03518757

Submitted on 10 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Practical Algebraic Attacks against some
Arithmetization-oriented Hash Functions

Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin

To cite this version:
Augustin Bariant, Clémence Bouvier, Gaëtan Leurent, Léo Perrin. Practical Algebraic Attacks against
some Arithmetization-oriented Hash Functions. [Research Report] Inria. 2022. �hal-03518757�

https://hal.archives-ouvertes.fr/hal-03518757
https://hal.archives-ouvertes.fr


Practical Algebraic Attacks against some
Arithmetization-oriented Hash Functions

Augustin Bariant1, Clémence Bouvier2,1,
Gaëtan Leurent1, Léo Perrin1

1 Inria, France
2 Sorbonne University, France

Abstract. Several challenges have been announced on arithmetization-oriented hash
functions, with bounties funded by the Ethereum Foundation. In this note, we report
on our work to solve several of these challenges, on Feistel-MiMC, Rescue Prime and
Poseidon.
Our results are obtained by writing the challenges as systems of polynomial equations
over the large field, and solving them with off-the-shelf tools (SageMath, NTL, Magma).

Keywords: Arithmetization-oriented hash functions, Poseidon, Feistel-MiMC, Rescue
Prime, algebraic cryptanalysis

1 Introduction

On November 1st, challenges for several arithmetization-oriented hash functions over
large prime fields were announced on https://www.zkhashbounties.info/, with the
goal to solve the CICO problem (Constrained Input - Constrained Output) for the inner
permutation.

The challenges, funded by the Ethereum Foundation, targeted reduced functions with
the following parameters:

Rescue Prime [SAD20]:

Feistel-MIMC [AGR+16]:

https://www.zkhashbounties.info/


Poseidon [GKR+21]:

Reinforced Concrete [BGK+21]:

On November 23rd (after we had sent solution to the first three Feistel-MiMC challenges),
the Feistel-MiMC challenges were modified as follows:

Feistel-MIMC:

In this work, we present simple algebraic attacks against some of these targets. We
model the CICO problem as a system of polynomial equations over the field, and we use
off-the-shelf computer algebra tools to solve the system.

2 Solving a System of Polynomial Equations
We first give a quick overview of classical methods to solve a system of polynomial equations
over a prime field. We assume that the system has the same number of variables and
equations, and that it behaves similarly to a random system, with one solution on average.

2



2.1 Univariate case
In the univariate case, solving a polynomial system is equivalent to finding the roots of a
polynomial 𝑃 ∈ F𝑝[𝑋] in a finite field of prime characteristic 𝑝. For a polynomial 𝑃 of
degree 𝑑, finding the roots requires 𝒪

(︀
𝑑 log(𝑑)

(︀
log(𝑑)+log(𝑝)

)︀
log(log(𝑑))

)︀
field operations,

using the following method. We assume that we can multiply two polynomials of degree 𝑑
with 𝒪

(︀
𝑑 log(𝑑) log(log(𝑑))

)︀
field operations using an FFT algorithm.

1. Compute 𝑄 = 𝑋𝑝 − 𝑋 mod 𝑃 .
Computing 𝑋𝑝 mod 𝑃 requires 𝒪(𝑑 log(𝑝) log(𝑑) log(log(𝑑)))) field operations using
a double-and-add algorithm.

2. Compute 𝑅 = gcd(𝑃, 𝑄).
𝑅 has the same roots as 𝑃 in the field F𝑝 since 𝑅 = gcd(𝑃, 𝑋𝑝 − 𝑋), but its degree
is much lower (it is exactly the number of roots).
This requires 𝑂(𝑑 log2(𝑑) log(log(𝑑))) field operations.

3. Factor 𝑅.
In general, 𝑅 has degree one or two because 𝑃 has few roots in the field, and this
step is negligible.

In particular, finding the roots in the prime field is significantly easier than factoring
the polynomial (it is quasi-linear in the degree). In practice, we use the NTL library, and
the computation is feasible up to degree roughly 320 ≈ 231.7 with 𝑝 ≈ 264; we show some
performance results in Table 1.

Table 1: Benchmarks of univariate root finding with NTL, using 1 CPU core of Intel Xeon
E7-4860.

Degree 311 312 313 314 315 316 317 318

Time 20s 75s 3m40s 13m 39m 2h8m 6h15m 22h36m
Memory 110MB 325MB 835MB 2,7GB 7,5GB 22,8GB 64GB 223GB

2.2 Multivariate case
In the multivariate case, finding solutions of a polynomial system can be done by computing
a Gröbner basis and converting it to an elimination order. The complexity depends on the
number of solutions 𝐷 in the algebraic closure of F𝑝; in the generic case 𝐷 is the product
of the degrees of the polynomials in the system (the Bézout bound). The complexity of
solving the system is essentially 𝒪(𝐷3), but it can be reduced to 𝒪(𝐷𝜔) asymptotically
using fast linear algebra [FGHR14] (with 2 ≤ 𝜔 < 2.3727 the exponent of linear algebra).

In practice, we use the Magma system, and the computation is feasible up to roughly
𝐷 = 39 (our experimental results are summarized in Table 2).

Comparing Table 1 with Table 2, we can see that solving a multivariate system is
significantly harder than solving a univariate one with the same number of solutions in
the algebraic closure. Therefore, we will try to build univariate systems when possible.

Table 2: Benchmarks of multivariate system solving with Magma, using 1 CPU core of an
Intel Xeon Gold 5218.

𝐷 36 39

Time 9 s 4 days
Memory 100MB 58GB

3



3 Algebraic modelization of the challenges
Let 𝑝 be a prime number, and 𝑡 ≥ 2 be some integer. We denote {𝑒𝑖}𝑖<𝑡 the canonical basis
of F𝑡

𝑝, so that 𝑒0 = (1, 0, ..., 0), etc. We also denote 𝜌𝑖 : F𝑡
𝑝 → F𝑝 the function mapping

𝑥 = (𝑥0, ..., 𝑥𝑡−1) to 𝑥𝑖.
Let 𝑢 < 𝑡 be an integer, and let 𝒵𝑢 be the vector space spanned by {𝑒0, ..., 𝑒𝑡−𝑢−1}. In

other words, 𝒵𝑢 is the set of all the elements of F𝑡
𝑝 such that their last 𝑢 coordinates are

equal to 0 (or, equivalently, such that 𝜌𝑖(𝑥) = 0 for all 𝑡 − 1 − 𝑢 < 𝑖 < 𝑡).

Definition 1 (CICO Problem). Let 𝐹 : F𝑡
𝑝 → F𝑡

𝑝 be a function, and let 𝑢 < 𝑡 be an
integer. The CICO problem consists in finding 𝑥 ∈ F𝑡

𝑝 such that

𝑥 ∈ 𝒵𝑢 and 𝐹 (𝑥) ∈ 𝒵𝑢 .

In what follows, we consider the case where 𝑢 = 1. In this case, we use the simpler
notation 𝒵 = 𝒵1.

3.1 Basic Approach
All the challenges proposed have 𝑢 = 1. In this case, the CICO problem for a function
𝐹 : F𝑡

𝑝 → F𝑡
𝑝 consists in finding 𝑥 ∈ F𝑡

𝑝 such that

𝜌𝑡−1(𝑥) = 𝜌𝑡−1 (𝐹 (𝑥)) = 0 .

Let 𝑉 be a vector of F𝑡
𝑝. If 𝑉 ∈ 𝒵𝑢, then finding an X ∈ F𝑝 such that 𝜌𝑡−1 ∘𝐹 (X𝑉 ) = 0

is sufficient to solve the CICO problem, and corresponds to finding roots of a univariate
polynomial. This simple attack works against some round-reduced variants of Feistel-MiMC.

3.2 A More Advanced Trick
A more sophisticated approach uses two steps.

Let 𝑃 = 𝑃0 ∘ 𝑃1 be a permutation of F𝑡
𝑝. Suppose that there exists two vectors 𝑉 and

𝐺 in F𝑡
𝑝 such that

𝑃 −1
0 (X𝑉 + 𝐺) ∈ 𝒵

for all X ∈ F𝑝. In this case, we can first find X such that 𝑃1(X𝑉 + 𝐺) ∈ 𝒵. Then, setting
𝑥 = 𝑃 −1

0 (X𝑉 + 𝐺) will yield a solution to the CICO problem, while the solver has to
handle a polynomial based on 𝑃1 rather than the full 𝑃 . This approach is summarized
in Figure 1, and we used it against both Poseidon (see Section 5) and Rescue Prime (see
Section 6).

4 Attacks Against Round-Reduced Feistel-MiMC
Feistel-MiMC operates on F2

𝑝 (𝑡 = 2) using a basic 𝑟-round Feistel structure with the 𝑖-th
round function being 𝑥 ↦→ (𝑥 + 𝑐𝑖)3. In order to build a polynomial system representing
the CICO problem, we consider an input state (𝑃0, 𝑄0) = (X, 0) (i.e. we use the basic
approach of Section 3.1 with 𝑉 = (1, 0) ∈ 𝒵1). Then we evaluate the round function
iteratively, as polynomials in F𝑝[X]:

𝑃0 = X 𝑄0 = 0
𝑃𝑖 = 𝑄𝑖−1 + (𝑃𝑖−1 + 𝑐𝑖)3 𝑄𝑖 = 𝑃𝑖−1 .

The CICO problem becomes 𝑄𝑟 = 0: we just have to find the roots of 𝑄𝑟 = 𝑃𝑟−1.
In practice, we use SageMath to generate the polynomial, and we compute the roots

either directly from SageMath, or with an external program using NTL.

4



𝑥 ∈ 𝒵

X𝑉 + 𝐺

𝑃 (𝑥) = 𝑦 ∈ 𝒵

𝑃0

𝑃1

Po
ly

no
m

ia
ls

ys
te

m
Pr

=
1

Figure 1: A 2-staged trick.

Complexity Analysis. Since the round function has degree 3, we obtain a univariate
polynomial 𝑃𝑟−1 of degree 𝑑 = 3𝑟−1 after 𝑟 − 1 rounds. We can estimate the complexity
of finding the roots as:

𝑑 log(𝑑)
(︀

log(𝑑) + log(𝑝)
)︀

log(log(𝑑)) ≈ 3𝑟−1 × (𝑟 − 1) × 1.58 × 64 × log2(𝑟 − 1).

We give explicit values for the proposed challenges in Table 3. Detailled time and memory
complexity for small instances can be found in Table 1.

Table 3: Complexity of our attack against Feistel-MiMC, compared with the security claims
given with the challenges. Time is given for attacks that we have implemented in practice.

Original parameters New parameters
𝑟 claim 𝑑 complexity time 𝑟 claim 𝑑 complexity
6 218 35 219 < 1s 22 236 321 247

10 230 39 226 1s 25 240 324 252

14 244 313 233 3min40s 30 248 329 260

18 256 317 240 6h15min 35 256 334 269

22 268 321 247 40 264 339 277

5 Attacks Against Round-Reduced Poseidon
The basic approach we described in Section 3.1 works for the easiest instance of Poseidon.
For the next one, we need to be a bit more clever, and thus use the technique from
Section 3.2. The idea is to decrease the degree and the complexity of the polynomial
system by more carefully choosing its variable.

We consider an input state after the S-box layer of the second round of the form
(𝐴3X, 𝐵3X, 𝑔) and we study the first rounds as shown in Figure 2 (i.e. we use 𝑉 =
(𝐴3, 𝐵3, 0) and 𝐺 = (0, 0, 𝑔)).

As in the specification, we use 𝑐𝑟
𝑖 to denote the 𝑖-th round constant used in round 𝑟.

We let the linear layer 𝑀 be such that

𝑀−1 =

⎡⎣ 𝛼0 𝛽0 𝛾0
𝛼1 𝛽1 𝛾1
𝛼2 𝛽2 𝛾2

⎤⎦ .

5



As a consequence, in Figure 2, the value (𝑐0
2)3 must satisfy

(𝑐0
2)3 = 𝛼2(𝐴X1/3 − 𝑐1

0) + 𝛽2(𝐵X1/3 − 𝑐1
1) + 𝛾2(𝑔1/3 − 𝑐1

2)
= X1/3 (𝛼2𝐴 + 𝛽2𝐵) + 𝛾2𝑔1/3 − 𝛾2𝑐1

2 − 𝛼2𝑐1
0 − 𝛽2𝑐1

1 .

It is the case provided for instance that:⎧⎨⎩𝐵 = − 𝛼2𝐴
𝛽2

𝑔 =
(︁

𝛾2𝑐1
2+𝛼2𝑐1

0+𝛽2𝑐1
1

𝛾2
+ (𝑐0

2)3
)︁3

.
(1)

As a consequence, if we find a value X such that the image of (𝐴3X, 𝐵3X, 𝑔) through
𝑅 − 2 rounds of Poseidon (and a linear layer) is equal to (*, *, 0), then we will always be
able to deduce an input (𝑥, 𝑦, 0) for 𝑅-round Poseidon is mapped to 𝒵.

Therefore, we evaluate the permutation as polynomials in F𝑝[X] starting from the state
(𝐴3X, 𝐵3X, 𝑔) with 𝐴, 𝐵, 𝑔 satisfying System (1), and the CICO problem is equivalent to
finding the root of the polynomial corresponding the rightmost branch of the output.

In practice, we use SageMath to generate the polynomial, and we compute the roots
either directly from SageMath, or with an external program using NTL.

?

𝑐0
0�

?

𝑐0
1�

0

𝑐0
2�

𝑆 𝑆 𝑆

? ? (𝑐0
2)3

𝑀

𝐴X1/3 − 𝑐1
0 𝐵X1/3 − 𝑐1

1 𝑔1/3 − 𝑐1
2

𝑐1
0 𝑐1

1 𝑐1
2� � �

𝐴X1/3 𝐵X1/3 𝑔1/3

𝑆 𝑆 𝑆

𝐴3X 𝐵3X 𝑔

Figure 2: How to bypass 2 non-linear layers of Poseidon.

Complexity Analysis. Poseidon has 𝑟 = RF + RP rounds in total, but we skip the first two
rounds using the trick. Therefore, we obtain a univariate polynomial of degree 𝑑 = 3𝑟−2,
and we can estimate the complexity of finding the roots as:

𝑑 log(𝑑)
(︀

log(𝑑) + log(𝑝)
)︀

log(log(𝑑))
)︀

≈ 3𝑟−2 × (𝑟 − 2) × 1.58 × 64 × log2(𝑟 − 2).

We give explicit values for the proposed challenges in Table 4. Detailled time and memory
complexity for small instances can be found in Table 1. For the instance with RP = 13,
the computation took 36 hours on a Xeon E7-4860 v2 using less than a terabyte of RAM,
using parallelization available in NTL with 32 cores available. However, most of the time
was spend with only one or three cores active; we did not investigate further how NTL
uses multiple cores.

6



Table 4: Complexity of our attack against Poseidon, compared with the security claims
given with the challenges. Time is given for attacks that we have implemented in practice.

RP claim 𝑑 complexity time
3 245 39 226 1s
8 253 314 235 13min

13 261 319 244 36h (multiple cores)
19 269 325 254

24 277 330 262

6 Attacks Against Round-Reduced Rescue Prime
Rescue Prime cannot be efficiently written as a univariate polynomial system, because it
uses both the S-Boxes 𝑥 ↦→ 𝑥3 and 𝑥 ↦→ 𝑥1/3. Each S-box has a low univariate degree in
one direction, but a high degree in the other direction. Therefore, we add intermediate
variables so that each S-Box can be described with a low-degree equation, and we build a
multivariate system.

More precisely, let us consider Rescue Prime with an 𝑚-element state (𝑚 = 2 or 𝑚 = 3)
and 𝑁 rounds. We use variables (𝑋0, 𝑌0, . . .) to represent the input and (𝑋𝑖, 𝑌𝑖, . . .) to
represent the internal state after the 𝑖-th round (𝑚(𝑁 + 1) variables in total). As shown
in Figure 3, we can write 𝑚 equations linking the 𝑚 variables at the input and output of
round 𝑖, using only the direct S-box 𝑥 ↦→ 𝑥3. Therefore, we have degree-3 equations:

∀𝑗 = {1, . . . , 𝑚}, 𝑃𝑖,𝑗(𝑋𝑖, 𝑌𝑖, . . .) − 𝑄𝑖,𝑗(𝑋𝑖+1, 𝑌𝑖+1, . . .) = 0 .

𝑋𝑖 𝑌𝑖 𝑍𝑖

𝑆 𝑆 𝑆

𝑀

𝑐2𝑖
0� 𝑐2𝑖

1� 𝑐2𝑖
2�

𝑆−1 𝑆−1 𝑆−1

𝑀

𝑐2𝑖+1
0� 𝑐2𝑖+1

1� 𝑐2𝑖+1
2�

𝑋𝑖+1 𝑌𝑖+1 𝑍𝑖+1

𝑃
𝑖

𝑄
𝑖

Figure 3: Polynomial equations for one round of Rescue Prime.

If we add equations 𝑋0 = 0 and 𝑋𝑁 = 0, we obtain a system of polynomial equations
representing the CICO problem. We observe that the input variables can be removed,
because we can directly write a degree-3 polynomial of 𝑋1, 𝑌1, . . . that must be equal to
𝑆(𝑋0) = 0. We can also remove 𝑋𝑁 because it is fixed to zero, and we obtain a system of
𝑚(𝑁 − 1) + 1 equations and 𝑚𝑁 − 1 variables.

With 𝑚 = 2, we have the same number of equations and variables. However, with
𝑚 ≥ 3 we have more variables than equations, and we can use the trick of Section 3.2 to

7



obtain a smaller system corresponding to a subset of the solutions with one solution on
average.

Bypassing the First Round. Let us repeat the idea described in Section 5 and apply it
for Rescue Prime. We consider an input state after the S-box layer of the second round of
the form (𝐴3X, 𝐵3X, 𝑔) and we study the first rounds as shown in Figure 4 (i.e. we use
𝑉 = (𝐴3, 𝐵3, 0) and 𝐺 = (0, 0, 𝑔)).

We first notice that we can switch the order of the multiplication by the MDS matrix
and the addition of the constants. Let⎛⎝ 𝐶0

0
𝐶0

1
𝐶0

2

⎞⎠ = 𝑀−1

⎛⎝ 𝑐0
0

𝑐0
1

𝑐0
2

⎞⎠ .

In particular, we have:
𝐶0

2 = 𝛼2𝑐0
0 + 𝛽2𝑐0

1 + 𝛾2𝑐0
2 .

As a consequence, using the same notations as above, the value 𝐶0
2 , in Figure 4, must

satisfy

𝐶0
2 = 𝛼2𝐴Y3 + 𝛽2𝐵Y3 + 𝛾2𝑔3

= Y3 (𝛼2𝐴 + 𝛽2𝐵) + 𝛾2𝑔3 .

It is the case provided for instance when:⎧⎨⎩𝐵 = − 𝛼2𝐴
𝛽2

𝑔 =
(︁

𝛼2𝑐0
0+𝛽2𝑐0

1+𝛾2𝑐0
2

𝛾2

)︁1/3
.

(2)

It follows that, if we find a value Y such that the image of (𝐴3Y, 𝐵3Y, 𝑔) through
𝑅 − 1 rounds of Rescue Prime (and a linear layer) is equal to (*, *, 0), then we will always
be able to deduce an input (𝑥, 𝑦, 0) for 𝑅-round Rescue Prime that is mapped to 𝒵.

? ? 0

𝑆 𝑆 𝑆

𝐶0
0� 𝐶0

1� 𝐶0
2�

? ? 𝐶0
2

𝑀

𝐴Y3 𝐵Y3 𝑔3

𝑆−1 𝑆−1 𝑆−1

𝐴1/3Y 𝐵1/3Y 𝑔

Figure 4: How to bypass the first round of Rescue Prime.

Then, for the remaining 𝑅 − 1 rounds, Figure 3 shows how we generate the following
polynomial equations to avoid the inverse S-box.

∀𝑗 = {0, 1, 2}, 𝑃𝑖,𝑗(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) − 𝑄𝑖,𝑗(𝑋𝑖+1, 𝑌𝑖+1, 𝑍𝑖+1) = 0 .

8



Finally, this results in the following system of polynomial equations:{︃
∀ 1 ≤ 𝑖 ≤ 𝑁 − 1, ∀ 𝑗 = {0, 1, 2},

𝑃𝑖,𝑗(𝑋𝑖, 𝑌𝑖, 𝑍𝑖) − 𝑄𝑖,𝑗(𝑋𝑖+1, 𝑌𝑖+1, 𝑍𝑖+1) = 0 ,
(3)

where 𝑍𝑁 = 0 and ⎛⎝ 𝑋1
𝑌1
𝑍1

⎞⎠ = 𝑀

⎛⎝ 𝐴1/3Y
𝐵1/3Y

𝑔

⎞⎠ +

⎛⎝ 𝑐1
0

𝑐1
1

𝑐1
2

⎞⎠ .

This system has 𝑚(𝑁 − 1) variables and 𝑚(𝑁 − 1) equations.

Complexity Analysis. With 𝑚 = 3 branches and 𝑁 rounds, we obtain a system of 3(𝑁 −1)
degree-3 equations with the same number of variables. In our experiments, the system
behaves like a generic system and has 𝐷 = 33(𝑁−1) solutions in the algebraic closure of
the field. Therefore, the complexity of solving the system is approximately:

𝐷3 = 39(𝑁−1).

With 𝑚 = 2 branches and 𝑁 rounds, we obtain a system of 2𝑁 − 1 degree-3 equations
with the same number of variables. Therefore, the complexity of solving the system is
approximately:

𝐷3 = 36𝑁−3.

We give explicit values for the proposed challenges in Table 5. Detailled time and
memory complexity for small instances can be found in Table 2.

Table 5: Complexity of our attack against Rescue Prime, compared with the security
claims given with the challenges. Time is given for the attack that we have implemented
in practice.

N 𝑚 claim 𝐷 complexity time
4 3 237.5 39 243 4 days
6 2 237.5 311 253

7 2 243.5 313 262

5 3 245 312 257

8 2 249.5 315 272

Acknowledgements
We thank Jules Baudrin and Clara Pernot for proof reading a first draft of this manuscript,
and Magali Bardet for helpful discussions about solving multivariate systems. This
work was partially financially supported by the french ministry of defence – Agence de
l’Innovation de Défense (AID).

References
[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and

Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219.
Springer, Heidelberg, December 2016.

9



[BGK+21] Mario Barbara, Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüfteneg-
ger, Christian Rechberger, Markus Schofneggerk, and Roman Walch. Re-
inforced concrete: Fast hash function for zero knowledge proofs and ver-
ifiable computation. Cryptology ePrint Archive, Report 2021/1038, 2021.
https://eprint.iacr.org/2021/1038.

[FGHR14] Jean-Charles Faugère, Pierrick Gaudry, Louise Huot, and Guénaël Renault.
Sub-cubic change of ordering for gröbner basis: a probabilistic approach. In
Proceedings of the 39th International Symposium on Symbolic and Algebraic
Computation, pages 170–177, 2014.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge
proof systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX
Security 2020, pages 1–17. USENIX Association, August 2021.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a standard
specification (SoK). Cryptology ePrint Archive, Report 2020/1143, 2020.
https://eprint.iacr.org/2020/1143.

10

https://eprint.iacr.org/2021/1038
https://eprint.iacr.org/2020/1143


A Implementation
By default NTL is limited to polynomials of degree at most 224. In order to generate the
largest systems, NTL must be recompiled with the following patch:

--- ntl-11.5.1/include/NTL/FFT.h
+++ ntl-11.5.1.patched/include/NTL/FFT.h
@@ -24,15 +24,15 @@
// Absolute maximum root bound for FFT primes.
// Don’t change this!

-#if (25 <= NTL_FFTMaxRootBnd)
-#define NTL_FFTMaxRoot (25)
+#if (32 <= NTL_FFTMaxRootBnd)
+#define NTL_FFTMaxRoot (32)

#else
#define NTL_FFTMaxRoot NTL_FFTMaxRootBnd
#endif
// Root bound for FFT primes. Held to a maximum

-// of 25 to avoid large tables and excess precomputation,
+// of 32 to avoid large tables and excess precomputation,

// and to keep the number of FFT primes needed small.
-// This means we can multiply polynomials of degree less than 2^24.
+// This means we can multiply polynomials of degree less than 2^31.

// This can be increased, with a slight performance penalty.

In order to generate the polynomial systems, SageMath must also be tweaked to use
this version of NTL (for instance by using LD_PRELOAD).

11


	Introduction
	Solving a System of Polynomial Equations
	Univariate case
	Multivariate case

	Algebraic modelization of the challenges
	Basic Approach
	A More Advanced Trick

	Attacks Against Round-Reduced Feistel-MiMC
	Attacks Against Round-Reduced Poseidon
	Attacks Against Round-Reduced Rescue Prime
	Implementation

